Power Systems Control and Stability
Select Other "city & date"
Power Systems Control and Stability Course
Introduction:
This session aims to increase the understanding of the function that Power System Protection systems play among plant operators, electricians, field workers, and engineers. Correct management and a thorough grasp of power systems will improve your plant's performance and efficiency while also enhancing everyone's safety. The goal of the course is to provide participants a thorough academic and practical grasp. The course begins at a basic level to help engineers and technicians become more comfortable with the art of learning, which may have been forgotten over time. It also serves as a refresher for those who are already familiar with the topics presented. Next, the workshop shifts to more intricate applications.
Course Objectives:
Participants attending this program will gain a detailed appreciation of the following:
- The need for protection
- An overview of power system fault analysis
- Protection fundamentals
- Relay transducers, both current and future
- System grounding principles
- Over current earth fault protection
- Coordination principles
Who Should Attend?
- Electrical Engineers
- Project Engineers
- Design Engineers
- Instrumentation and Design Engineers
- Electrical Technicians
- Field Technicians
- Electricians
- Plant Operators
Course Outlines:
Need For Protection
- Selectivity, stability, sensitivity, speed, reliability, dependability, security
Fault Types & Their Effects
- Active, incipient, passive, transient, asymmetrical
- Phase & earth faults
Simple Calculation of Short
Circuit Currents
- Revision of simple formulae
- Calculation of short circuit MVA & fault currents
- Worked examples
System Earthing
- Solid, impedance, touch potentials
- Effect of electric shock
- Earth leakage protection
- Protection System Components
Including Fuses
- History, construction & characteristics
- Energy let through & applications
Instrument Transformers
- Current transformers: construction, performance, specification, magnetization curves
- Voltage transformers: types, accuracy, connections
Circuit Breakers
- Purpose & duty, clearance times, types
Tripping Batteries
- Battery types, chargers, maintenance, D.C. circuitry
Relays
- Inverse definite minimum time (IDMT) relay
- Construction principles and setting
- Calculation of settings - practical examples
- New Era - modern numerical relays & future trends
Practical demonstrations and sessions
- Including simple fault calculations and relay settings
Co-Ordination by Time Grading
- Problems in applying IDMT relays
Low Voltage Networks
- Air & molded circuit breakers
- Construction and installation
- Protection tripping characteristics
- Selective co-ordination (current limiting, earth leakage protection, cascading)
Principles of Unit Protection
- Differential protection - basic principles
Feeder Protection
- Cables
- Pilot wire differential
- Overhead lines
- Distance protection (basic principles, characteristics, various schemes)
Transformer Protection
- Phase shift, magnetizing in-rush, inter-turn, core & tank faults
- Differential & restricted earth fault schemes
- Bucholz relay, oil & winding temperature
- Oil - testing & gas analysis
Switchgear (Busbar) Protection
- Requirements, zones, types
- Frame leakage
- Reverse blocking
- High, medium & low impedance schemes
Motor Protection
- Thermal overload, time constraints, early relays, starting & stalling conditions
- Unbalanced supply voltages, negative sequence currents, de-rating factors
- Phase faults protection
- Earth faults - core balance, residual stabilizing resistors
Generator Protection
- Stator & rotor faults
- Overload & over-voltage
- Reverse power, unbalanced loading
- Loss of excitation and synchronism